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Capturing medical practice with
indication embeddings

Drug safety &
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Goal: health data to find drug effects
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But A=Y association may
be due to confounding
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Cohort studies reduce confounding by crafting comparator cohort
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Cohort study relies
on expert design

insulin, Type 2 diabetes
Domain experts needed to:

Find suitable
comparator drug

Design
matching—
identify

confounders Insulin resistance

Creating indication embeddings

New Rx
metformin

150 million patient histories
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of predicting what drug

Evaluating embeddings |
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Serums, Toxoids, Vaccines
Diagnostic Agents

i ental Agents
Respiratory Tract Agents
Gastrointestinal Drugs
Anti-Infective Agents

Eye, Ear, Nose Throat
Antineoplastic Agents
Blood Form/Coagul Agents
Immunosuppressants
Autonomic Drugs
Cardiovascular Agents
_entral Nervous System
kin & Mucous Membrane
mooth Muscle Relaxants
Antihistamines & Comb.
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For each drug, performance of embedding Dot-products between
distance to predict indications. Overall antidepressants and selected
Step 1. Step 2:

ROCAUC = .82 closest diagnoses.
Match with embeddings
Coarsened exact matching by Encode histories 2>

age, genderéyear, number of Rx small dense vectors
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Mahalanobis match on health
summaries within bins

I Health summary vectors

Training task:

-I/Predict drug

Train neural network on tast

1) Expert curates similar drug C which
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Simple neural network
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follows what event in history
in order to learn embeddings

Drugs with same therapeutic use
as carbamazepine: primarily

anticonvulsant, off-label for bipolar.
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2) Expert knowledge of confounding to 3) Now
choose feAatures for matching

often
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Matching without expert designe

How to match on 30,000+ dimensional,
sparse, uninformative vectors?

--OtherRX, |nstead map them to small,

meaningful embeddings
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Drug embedding = drugs
given in most similar health
contexts

ap each event to 50-
dimensional vector

Indication embedding =
health context for prescription
of a new drug
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the 2 cohorts are matched on key

confounders, we compare outcomes
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Medical knowledge
created the health
data: can we
extract this meaning
from the health
data to create
embeddingse

Embeddings relate codes to health needs

Schizophrenia_Related Psychosis
+ psychosis related medications
Type_ll_Diabetes Mellitus
diabetes related medications
Breast_Cancer
Breast cancer medications
mastectomy
Ovarian_Cancer
hysterectomy
Myocardial_Infarction
MI medications
Coronary bypass graft
Psoriasis_Related Disorders
+ psoriasis medications
e Allergy
allergy medications
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Drugs with closest embedding dot
product are more comparable, as
measured by AUC

{|anticonvulsants
antipsychotics
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Embedding can m

Smoking
confounds

bupropion 9
effects.

Each point is UMAP
placement of embedding of
one patient taking either:
bupropion (antidepressant
also prescribed for
smoking cessation)
escitalopram (another
antidepressant)
varenicline (smoking
cessation drug)

Lines connect matched pairs
of bupropion to escitalopram
takers in 2 matching schemes
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indication embedding dot product
treatment = carbamazepine

Embedding
matching
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Embedding matches
better for many
possible confounders

key conf

ding matches

Section depleted for varenicline users so@
contains non-smokers: embedding better £
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PS matches
@ amitriptyline - bupropion
¥ mirtazapine - paroxetine
A bupropion - escitalopram_oxalate
<4 doxepin - venlafaxine
» fluvoxamine - amitriptyline
m duloxetine - bupropion
¢ 331.9, Cerebral degeneration
e 5641, IBS
¢ 305.1, Smoking

FLU. U, LUPUS
e 7291, Fibromyalgia
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