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Genetic similarity between cancers and
comorbid Mendelian diseases identifies
candidate driver genes
Rachel D. Melamed1,2, Kevin J. Emmett1,3, Chioma Madubata1, Andrey Rzhetsky4,5,6 & Raul Rabadan1,2

Despite large-scale cancer genomics studies, key somatic mutations driving cancer, and their

functional roles, remain elusive. Here, we propose that analysis of comorbidities of Mendelian

diseases with cancers provides a novel, systematic way to discover new cancer genes. If

germline genetic variation in Mendelian loci predisposes bearers to common cancers, the

same loci may harbour cancer-associated somatic variation. Compilations of clinical records

spanning over 100 million patients provide an unprecedented opportunity to assess clinical

associations between Mendelian diseases and cancers. We systematically compare these

comorbidities against recurrent somatic mutations from more than 5,000 patients across

many cancers. Using multiple measures of genetic similarity, we show that a Mendelian

disease and comorbid cancer indeed have genetic alterations of significant functional simi-

larity. This result provides a basis to identify candidate drivers in cancers including melanoma

and glioblastoma. Some Mendelian diseases demonstrate ‘pan-cancer’ comorbidity and

shared genetics across cancers.
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R
ecent years have brought an explosion in the number of
genomically profiled tumours, and the promise of finding
most genetic loci containing cancer-predisposing variation

seems within reach. Although algorithms to sort through the
complex landscape of tumour lesions1,2 have revealed recurrently
altered ‘driver loci’—those somatic or germline genetic defects
that are most likely to trigger the disease—the directory of
relevant genes and the catalogue of their roles in tumour
progression remain incomplete. The search for cancer genes has
expanded to additional informative patterns, such as mutual
exclusivity of mutation across patients and functional
relationships between cancer-altered genes3–5.

One historical source of information on key cancer alterations
may be found in Mendelian disorders, rare conditions that have
long provided insight into a wide array of human disease
processes. Some of the first genes linked to cancer were
characterized by their highly penetrant familial association with
certain tumours. Studies of familial retinoblastoma led to the
identification of RB1 as a tumour suppressor6, whereas cases of
Li-Fraumeni syndrome showed that germline mutation of TP53
pleiotropically predisposes patients to many cancers7. Other
Mendelian disorders, such as Rubinstein–Taybi syndrome,
involve a primary phenotype apparently unrelated to cancer,
yet the bearers are known to have an increased tumour risk8.
Recent studies demonstrating that Rubinstein–Taybi’s primary
causative gene, CREBBP, is also recurrently somatically
inactivated in a number of cancers9–11 have provided a likely
explanation for this comorbidity. These examples suggest that
Mendelian germline mutations could predispose Mendelian
disease patients to common cancer by disrupting cellular
functions that in the majority of cancer patients are altered by
somatic rather than germline genetic events.

Recently, Electronic Health Record (EHR) data sets of
unprecedented size have provided statistical power to measure
comorbidity of pairs of diseases12–14. With the recent increase in
the amount of data recorded in EHRs, it is newly possible to
detect clinical associations even in diverse rare diseases, such as
some Mendelian diseases. These results have suggested that
comorbidity is indicative of shared germline genetic architecture.
Here, we propose that Mendelian disease comorbidity with cancer
could be associated with a relationship between Mendelian
disease loci and driver loci somatically altered in cancer. It is
possible that genetic variants that cause Mendelian disease with
high cancer comorbidity also provide a selective advantage to
aberrant cells of a developing tumour, leading to this
predisposition to a certain type of cancer. If this is correct,
exactly the same Mendelian loci and molecular pathways
incorporating their products would be involved in a somatic
context in tumours of patients lacking the germline mutation.
Thus, comorbidity calculated from EHRs spanning large numbers
of patients could provide a novel line of evidence for functional
involvement of some genes as cancer drivers.

By integrating clinical data from more than 100 million
patients with somatic genomic information from thousands
of tumours from The Cancer Genome Atlas (TCGA)15, we
explore genetic relationships between Mendelian diseases and
common cancers. First, we examine the hypothesis that
comorbidity between Mendelian disease and cancer may be due
to similarities between the genes involved in each. We find
that comorbid diseases have statistically significant genetic
similarity. Having established this association, we test for
genetic similarity of comorbid pairs of Mendelian disease and
cancer, identifying disease pairs with shared cellular processes.
For each TCGA cancer type, we identify genes from comorbid
and genetically similar Mendelian diseases as candidate cancer
drivers.

Results
Integration of disease comorbidities and genes. In the work of
Blair et al.14, the authors estimated comorbidity among a set of
diseases well characterized by patient billing codes, comprising 95
Mendelian diseases and 65 complex diseases, including 13
common cancers. Comorbidity was calculated using seven EHR
data sets, including the MarketScan insurance claims database
covering nearly 100 million patients. For each complex disease,
they compared its incidence in Mendelian disease patients against
its marginal incidence. Patient zip code information was
connected with US census data to obtain demographic,
socioeconomic and environmental factors. They then corrected
for these confounders, as well as for errors in billing codes, using
a regression approach. Combining these analyses, they estimated
relative risk for a complex disease in Mendelian disease patients.
We use these estimates throughout this work. For each Mendelian
disease billing code set, the authors curated a list of corresponding
diseases, each linked to genetic loci16. Utilizing their work and
other curation, we find a median of four genes related to each
Mendelian disease type (the full distribution is shown in
Supplementary Fig. 1a, and the genes associated with each
disease is available in Supplementary Data 1).

Of the 13 cancer diagnosis code sets included in the Blair
analysis, 10 correspond to one or more tumour types profiled in
TCGA (Supplementary Data 2). These 10 diagnosis codes
correspond to 15 TCGA tumour types, including melanoma,
glioblastoma and other common cancers, with genomic data
across a total of 5,667 patients. For each tumour type, we gather
sets of genes identified as significantly mutated by MutSig1 or
located in peaks of copy-number amplification or deletion by
GISTIC2 (ref. 2; Fig. 1a). A median 155 genes are recurrently
genetically altered per tumour type (Supplementary Fig. 1b).

Investigating genetic similarity between comorbid diseases.
To assess whether comorbid Mendelian diseases and common
cancers share similar genes and cellular processes, we compare
the sets of genes associated with a Mendelian disease to the
recurrently genetically altered genes in TCGA. We consider
multiple measures of genetic similarity, reflecting different
potential relationships, including (1) shared genes, (2) shared
pathways and (3) gene and protein interactions. We show that
comorbid disease pairs have significantly more genetic similarity
than expected at random.

First, we examine whether the genes responsible for a
Mendelian disorder are more likely to be altered in comorbid
cancers. For each of the 427 pairs of comorbid Mendelian disease
and TCGA cancer, we assess how many genes are shared. Across
all comorbid pairs, 41 genes are shared between the Mendelian
causal gene set and the recurrently somatically altered cancer
gene set (Fig. 2a), while 29 would be expected (P¼ 0.021, as
described in Methods and shown in Supplementary Fig. 2a).

Second, we test the hypothesis that comorbid diseases share
common cellular processes. For this purpose, we count the shared
pathways between comorbid diseases, using 1,343 pathway gene
sets compiled in the Consensus Pathway Database17. A pathway
is considered shared if it is enriched for the cancer gene set and
contains a Mendelian disease gene. Aggregating across all
comorbid pairs, we find 136 shared pathways, while 65 would
be expected (Po10� 5, using convolution of hypergeometric
distributions as described in Methods, and shown in
Supplementary Fig. 2b).

Third, we test the hypothesis that the number of direct
interactions between Mendelian disease genes and genes
somatically mutated in comorbid cancer is elevated, using
established gene interaction networks. We compare the observed
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number of interactions in a network against a null model
comprised of a set of randomly shuffled networks, controlling for
the number of network edges each gene has. We test this measure
in two interaction networks. The first network, BioGRID18, is a
large curated network of protein and genetic interactions. We
observe 797 direct edges in this network, more than 98.3% of
random networks (Supplementary Fig. 2c). The second network,
HumanNet19, contains uncurated connections generated from
integrated data sources. We find 296 connections, which is more
than in 99.8% of the random networks (Supplementary Fig. 2d).

Note that to assess the significance of novel Mendelian disease
associations with cancer, this analysis excludes well-known
Mendelian cancer syndromes (Li–Fraumeni syndrome, specified
hamartoses, multiple endocrine neoplasia, neurofibromatosis and
tuberous sclerosis). These cancer syndromes, as would be
expected, are each comorbid with multiple cancers, and they
show many shared genes and pathways with the cancers
(Supplementary Data 3).

Thus, using a number of lines of evidence, we have shown that
the genes involved in Mendelian diseases have statistically
significant genetic similarity with the genes altered in
co-occurring cancers. Therefore, comorbidity may be due to
these shared genetic processes. Interestingly, most of these
connections have not been not previously reported.

Prediction of diseases with shared cellular processes. To use
comorbidity as a way of identifying candidate drivers for each
cancer, we apply a version of the previously described metrics to
each pair of comorbid diseases. Just as we tested for a significant
number of genes shared across all comorbid disease, we perform a
similar test for each pair of Mendelian disease and cancer. This
gene-enrichment metric assesses overrepresentation of the set of
Mendelian disease genes within the somatically altered cancer
gene set. For the pairwise shared pathway metric, we assess
whether the pathway-enrichment scores are significantly corre-
lated for the pair of diseases (Fig. 2b). The network metric tests

whether a Mendelian disease gene set has more direct interactions
with a set of comorbid cancer genes than the random expectation,
testing interactions from BioGRID and HumanNet separately.
In addition, to test for functional similarity in an unbiased
fashion, we compare coexpression of Mendelian and cancer
genes. We use a large and diverse panel of human primary cells,
tissues, and cell lines from the FANTOM5 project20. For each
pair of diseases, we test whether any cancer-altered genes show
significantly elevated coexpression with the set of Mendelian
disease genes (Fig. 2c).

After correcting for the number of comorbid pairs (see
Methods), we find that coexpression has the most instances of
similarity, most likely due to the fact that more genes can be
compared and many types of functional relationships can be
captured with coexpression. In contrast, the gene enrichment and
network metrics have very few instances of significant similarity,
a point that is discussed below. These metrics define a list of
candidate driver genes. The complete list of genes and genetic
similarity scores associated with each linked disease pair is
available in Supplementary Data 4. To provide examples and to
demonstrate their relevance, we highlight some candidates
implicated for cutaneous melanoma and brain neoplasms.

Cutaneous melanoma is often located on sun-exposed sites,
undergoing a high rate of genetic damage. Our findings highlight
both recurrently altered genes in melanoma and comorbid
Mendelian genes as potential cancer drivers. A central transcrip-
tion factor involved in melanocyte cell fate, MITF, is related to
multiple Mendelian diseases comorbid with melanoma. This gene
has a complex role in this cancer: while it is recurrently amplified
in 26% of TCGA melanomas, possibly promoting melanocyte
proliferation, it is also frequently deleted (11% of cases).
Suppression of the gene is also advantageous for the growing
cancer, as it reduces terminal differentiation and senescence in
melanocytes21,22. The melanocyte’s primary receptor MC1R,
upstream of MITF, its other upstream activators, PAX3 and
SOX10, as well as MITF’s key target, TYR, are all associated with
Mendelian disorders comorbid with melanoma (Fig. 3a).
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Of these, MC1R and TYR are associated with oculocutaneous
albinism (included in International Classification of Disease,
revision 10 (ICD10) billing code E70.2/3, melanoma relative risk
95% confidence interval (CI)¼ (2.16–5.19)). MC1R is among the
recurrently deleted genes in melanoma. Germline variants of
MC1R, causing red hair, have been implicated as a risk factor for
melanoma via both pigmentary and non-pigmentary path-
ways23,24, and polymorphic variants of TYR, which leads to
green eyes, also confer significant, though lesser, risk25. Other
albinism-related genes have significantly elevated coexpression
with MITF (corrected rank-sum P¼ 0.020) as well as MITF’s
target gene26 KCNAB2 (corrected rank-sum P¼ 0.0093).
KCNAB2 is recurrently deleted in the melanoma cases.
Although the candidate melanoma genes associated with
albinism are not recurrently genetically mutated in melanoma,
we examine their patterns of expression for evidence of a
functional contribution to the disease. Clustering melanoma
tumours by their expression of these genes, we find stable clusters
(Supplementary Fig. 3a). We assess clinical outcome in these
groupings, and we find that the cluster assignments are highly
predictive of patient survival (P¼ 0.0022, Supplementary Fig. 3b).

This suggests that indeed this pathway is highly relevant for
melanoma progression.

Also regulating MITF activity are its coactivators EP300 and
CREBBP27, genes associated with the melanoma-comorbid
Rubinstein–Taybi syndrome (code group Q87.2, relative risk
95% CI¼ 1.19–1.99). EP300 is recurrently amplified (36% of the
TCGA melanomas), but also frequently deleted (7% of cases).
Rubinstein–Taybi shares many pathway with melanoma (Fig. 2b),
including ‘melanocyte development and pigmentation’ and
‘regulation of nuclear beta catenin signaling and target gene
transcription’, both of which involve MITF. The amplifications of
EP300 are significantly more likely to co-occur in the same
patients with MITF amplifications (one-tailed Fisher’s exact test,
P¼ 0.0041), suggesting cooperation between the alterations, and
a particular role for these genes in melanoma: the histone
acetyltransferase activity of EP300 might enhance the function of
an oncogenically amplified MITF. CREBBP and EP300 defects
have also been linked to aberrant TP53 and BCL6 regulation in
some lymphomas28.

Comorbidity of melanoma with ectodermal dysplasias (ICD10
code Q81, melanoma relative risk 95% CI¼ 6.01–17.84) may
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highlight the importance of tissue invasion in melanoma
progression. The ectodermal dysplasia disease epidermolysis
bullosa can arise from genetic alteration to proteins involved in
structural support, tissue integrity and adhesion in the dermis and
epidermis. Although the chronic inflammation and tissue damage
associated with epidermolysis bullosa may play a role in its
known risk for skin cancers, subtypes of the condition have been
shown to lead to skin squamous cell carcinoma that is more
aggressive than in other conditions involving chronic skin
scarring29. The ectodermal dysplasia genes show high
coexpression with melanoma-altered genes related to cell
contact in the epithelium, especially PTK6 (Fig. 2c). This gene
is focally amplified in 44% of melanomas and has an identified
role in epithelial invasion and mesenchymal transition in prostate
and breast cancers30,31, but PTK6 has been rarely studied in
melanoma. The TCGA melanoma cohort is primarily composed
of metastasis samples, but the expression data also includes 103
primary tumours, mostly stage IIC, along with 368 metastases. As
changes in cell contact and mesenchymal transition may be
related to metastasis state, we compare expression in primary
versus metastasis. We find that PTK6 is significantly differentially
expressed (adjusted P-value¼ 3.29� 10� 28). In addition, of 11
ectodermal dysplasia candidate melanoma genes, nine are
significantly downregulated in metastases as compared with
primary (gene set differential expression camera P value¼
0.00032, GSEA P value¼ 0, Supplementary Fig. 4).

The other cancers included in our study also have informative
genetic and clinical links with Mendelian disease. Diamond–
Blackfan anemia, a blood disorder, is comorbid with the brain
neoplasms (ICD10 D61.01, relative risk 95% CI¼ 9.22–28.67).
Indeed, Diamond–Blackfan patients have risk for seven of the

cancer ICD-9 code groups, along with other blood and solid
cancers32. Among Diamond–Blackfan’s causal genes is RPL5, a
gene that is significantly deleted in 8% of TCGA glioblastoma and
that suppresses MDM2 (ref. 33; Fig. 3b). MDM2 is recurrently
amplified in 15% of TCGA glioblastoma cases. It is an established
oncogene that negatively regulates TP53 (ref. 34). Like RPL5,
other Diamond–Blackfan genes RPL11 and RPS7 repress MDM2
in response to ribosomal stress34. The deletion of RPL5 is
mutually exclusive with amplification of MDM2 (P¼ 0.033,
Fig. 3c), supporting the role of RPL5 deletion as an alternative
mode of TP53 abrogation. While RPL11 is less frequently deleted,
it also has a mutually exclusive pattern with MDM2 amplification
(P¼ 0.042). The role of these ribosomal proteins in glioblastoma
appears to be unstudied, making this a strong candidate for
further study.

Although Diamond–Blackfan anemia is comorbid with many
cancers, the cranial development disorder holoprosencephaly is
comorbid only with the brain neoplasms (ICD10 Q04.2, relative
risk 95% CI¼ 9.30–15.95). Defects in genes that regulate cranial-
specific components of the sonic hedgehog pathway are
responsible for the improper embryonic patterning in holopro-
sencephalies35. This pathway regulates expression of the GLI
transcription factors, which have been linked to maintenance of
stemness in gliomas36. Subtypes of glioblastoma have been
defined on the basis of gene expression patterns, and among these
the Classical subtype has a signature including Sonic hedgehog
signalling37. Holoprosencephaly genes have weak pathway-
enrichment similarity with low-grade glioma genes, as well as
coexpression with multiple of the low-grade glioma genes,
particularly the recurrently copy-number-altered gene VENTX
(corrected rank-sum P¼ 0.0092). In the TCGA lower-grade
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glioma cohort, VENTX lesion occurs more in higher-grade
tumours, and these lesions are anticorrelated with IDH1
mutation. Mutation of IDH1 is associated with good prognosis
and particularly co-occurs in subtypes of low-grade glioma with
either TP53 alteration or 1p19q codeletion38. Comparing the
IDH1 mutated against the VENTX mutated samples, we find
strong differential expression of the holoprosencephaly genes
TGIF1, SIX3, ZIC2, GLI2. As a set, the holoprosencephaly
candidate brain neoplasm genes are significantly upregulated in
the VENTX mutated tumours (camera P value¼ 0.048, GSEA
P value¼ 0.031, Supplementary Fig. 5). Both VENTX mutation
and activated hedgehog signalling are thus associated with higher-
grade gliomas. Changes in regulation of the sonic hedgehog
pathway may be an important step in the progression of lower-
grade glioma, as in classical glioblastoma.

Pan-cancer Mendelian associations. Above, we describe a
number of processes aberrantly regulated in Mendelian disease
and in common cancer. The Blair analysis14 suggested that the
unique set of Mendelian diseases comorbid with a complex
disease represented a sort of barcode, indicative of the unique set
of cellular processes underlying each disease. This hypothesis is

indeed reflected in the sets of disorders, and underlying genetic
lesions, found in this study.

On the other hand, some Mendelian diseases predispose
carriers to many cancer types, while others have no relationship
with cancer. In fact, the number of comorbid cancers per
Mendelian disease follows a highly non-random distribution
(Fig. 4a). One interpretation of this pattern is that the genes
altered in some Mendelian diseases, such as Li–Fraumeni
syndrome, Rubinstein–Taybi syndrome and Diamond–Blackfan
anemia, are related to pan-cancer processes common to cancer
development in many contexts. This interpretation is supported
foremost by our finding of statistically significant genetic
similarity in comorbid disease pairs. In addition, we examine
four new cancers with available TCGA data but no comorbidity
information (ovarian, thyroid, head and neck, and acute myeloid
leukemia). If the pan-cancer Mendelian diseases impact core
cancer processes, we would expect these to be relevant to these
new cancers. We test whether pathways associated with
Mendelian diseases with many (more than five) cancer comor-
bidities are enriched in the four new cancers. We find that the
Mendelian diseases with multiple comorbidities share 27 path-
ways with the four cancers with no comorbidity information,
more than the random expectation (P¼ 0.005, excluding
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Figure 4 | Some Mendelian diseases appear to have pan-cancer comorbidity and genetic similarity. (a) The distribution of the number of comorbid

cancer diagnosis codes per Mendelian disease is shown. The actual distribution (red bars) includes a large number of Mendelian diseases with no cancer

relationship, and a long tail with Mendelian diseases that are comorbid with many cancers. The blue bars represent the expected distribution: about one-

third of the pairs of disease have a comorbidity relationship, thus the expected mode of the distribution would have four comorbid cancers per Mendelian

disease. The expected distribution is modelled using a binomial. (b) Mendelian diseases that have comorbidity with and genetic similarity to more than

three cancers are compared with all 19 available TCGA cancers, 15 of which have comorbidity information. These mostly have widespread comorbidity and

show genetic similarity (after multiple testing correction) across many cancers. Similarity was calculated here without removing the known germline-

associated cancer genes to view all the associations.
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Mendelian cancer syndromes). In another test of this hypothesis,
we assess whether Mendelian diseases with more cancer
comorbidities are associated with genes that have cancer-related
characteristics. We create a set of the 48 genes recurrently altered
in more than four of the 19 TCGA tumour types. We call these
the multi-cancer mutation genes. Examining FANTOM5 coex-
pression of the Mendelian disease genes and the multi-cancer
mutation genes, we find a significant correlation with number of
cancer comorbidities in the gene’s associated Mendelian disease.
That is, the more the cancers are comorbid with a Mendelian
disease, the higher the coexpression of a Mendelian disease
gene and multi-cancer mutation genes (Spearman correlation
P value¼ 0.027). These findings suggest that some Mendelian
diseases predispose patients to many cancers by genetic
alterations affecting pan-cancer processes.

The Mendelian diseases with the most links to cancer indeed
impact pathways shared across many cancers, including telomere
maintenance, DNA damage response and mTOR signaling
(Fig. 4b, and Supplementary Data 3 and 4). Pan-cancer
associations with immunodeficiency syndromes could be owing
to the compromised immune system, rather than the ability of the
tumour to evade immune suppression. However, we find many
instances of genetic similarity with cancer, suggesting that the
same functions are frequently somatically altered in tumours. For
example, the gene B2M is recurrently mutated or deleted in the
TCGA melanoma, lung squamous cell carcinoma and colon
adenocarcinoma. Loss of this gene leads to abolition of the MHC
class I complex in tumour cells and has been shown to influence
immune escape in some lymphomas39. B2M has significant
coexpression with the immunodeficiency genes, and CIITA and
RFX5, immunodeficiency genes that mainly regulate MHC
class II expression, have a secondary role in regulating MHC
class I expression40. Novel pan-cancer associations include the set
of lipoprotein deficiencies, defects in widely expressed proteins
that lead to an imbalance of blood cholesterols. The genes
associated with lipoprotein deficiencies also influence
inflammation and are enriched in the highly cancer-relevant
TGF-b pathway. Cancers, with their elevated rates of
proliferation, are thought to have high cholesterol metabolism,
and the role of blood cholesterol in tumour progression is a
current area of research41. The lipoprotein deficiency genes are
significantly coexpressed with a number of metabolism-related
genes that are recurrently mutated in multiple cancers
(Supplementary Data 4). These include IDH1, a gene that has
been shown to be regulated with cholesterol levels42 and to be
relevant in gliomas and other cancers43. If pan-cancer Mendelian
associations exist, this further supports the hypothesis that
comorbidity between Mendelian disease and cancer is owing to
shared processes disrupted by germline or somatic alterations,
respectively.

Discussion
We have shown that Mendelian diseases that are comorbid with a
cancer are likely to involve mutation of genes similar to those that
are somatically altered in that cancer. Importantly, this suggests
that comorbidity between Mendelian disease and cancer may be
due to germline mutations that provide a fertile ground for the
growth of certain aberrant cells. This novel finding provides new
insight into the somatic genetic alterations present in a cancer,
presenting them in the context of well-characterized diseases with
simpler genetics. While algorithms for classifying genes as
preferentially somatically mutated in a cancer are an active area
of research, comorbidity can provide an orthogonal line of
evidence for involvement of cellular processes in oncogenesis and
pinpoint driver genes among the recurrently mutated genes.
Candidate drivers among the Mendelian disease genes include

many genes that are less recurrently somatically mutated, but
impact the same pathways. Many of our candidate drivers have a
bulk of evidence supporting their role: beyond our findings
related to comorbidity and genetic similarity, the candidate genes
include some recurrently mutated in cancer, and some with
identified roles as drivers in other tumours. In addition, we have
used patterns of co-occurrence of candidate mutations across
tumour cohorts to demonstrate a likely role for these genes in the
tumours. For less frequently mutated candidate drivers, we have
related gene expression with clinical indicators.

Our results are informative of the many processes that are
involved in cancer development. Inactivation of ribosomal protein
RPL5, associated with Diamond–Blackfan anemia, has the
potential to cause aberrant TP53 degradation in multiple cancers.
As cancer is known to involve defects in differentiation44, much
like a number of Mendelian diseases, a role for the Mendelian
disease genes in cancer dedifferentiation and aberrant
proliferation is plausible. Other ‘hallmarks of cancer’, such as
invasion or regulation of apoptosis are also represented in the
Mendelian diseases. As cancers have many altered processes in
common, it is logical that we also find some ‘pan-cancer’
Mendelian diseases with multiple genetic and clinical associations.

In contrast, some germline variants predispose patients to a
more narrow range of cancers, which can reveal more specific
oncogenic processes. A few Mendelian disorders are comorbid
only with brain neoplasms and melanoma. As melanocytes are
descended from the neural crest, Mendelian genetic lesions
affecting neural development are likely to affect processes in
melanocytes, including proliferation and terminal post-mitotic
differentiation. One interesting example is microphthalmos,
meaning small eye, a disease phenotype that, in the mouse, gave
rise to the name of the melanoma oncogene MITF (micro-
phthalmos transcription factor). In humans, the most common
causal genes are closely tied in expression and in function to
MITF45 (Fig. 3a). Some of the microphthalmos genes have been
implicated in neural-derived tumours46–48, and these may be
exciting novel candidates in melanoma. There is a link between
some sensineural disorders and pigment anomalies: the
phenotype of microphthalmos can also occur to varying degrees
in patients with Rubinstein–Taybi syndrome and in patients with
Waardenburg syndrome, a pigment and deafness disorder. The
idea that disorders comorbid with the same cancer may share
pathways with each other is highly intriguing. Waardenburg
syndrome (included in ICD10 code group Q79.8), like
microphthalmos, shows comorbidity only with melanoma and
brain neoplasms. Waardenburg has correlated pathway
enrichment to melanoma (P¼ 5.8� 10� 4): both diseases are
impact melanocyte development and b-catenin signaling
pathways. However, the billing code used is not specific enough
to have significant enrichment.

In fact, many of the Mendelian diseases with an apparent risk
for cancer do not display genetic similarity by our pairwise
metrics. We chose a limited number of genetic similarity metrics
to consider different lines of interpretable evidence for functional
similarity, but other comparisons of genetic similarity could
capture more connections. For example, the blood disorder
thalassemia can lead to overloaded blood iron levels49 which may
explain these patients’ risk for a variety of cancers50; however, this
effect is not detected by our current approach. In addition, a
number of factors introduce noise into our source data. These
issues include ambiguity of the diagnosis codes; heterogeneity of
the Mendelian diseases; insufficient sampling of the mutation
spectrum of both Mendelian disease and of cancer.

Our finding of statistically significant association of genetic
similarity with comorbidity, despite these factors, is a main
discovery of our work. This implies that future large-scale studies

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8033 ARTICLE

NATURE COMMUNICATIONS | 6:7033 | DOI: 10.1038/ncomms8033 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


mining rich data sources such as the eMERGE network51 will find
more genetic and clinical associations. Other future work building
on our results includes, foremost, the experimental assessment of
the candidate driver genes. Drugs that target these cellular
processes, perhaps as studied in Mendelian disease patients, may
be applicable for the treatment of the tumours52.

Methods
Data sets. We used the Supplementary Material available in Blair et al.14, to
classify pairs of Mendelian disease and complex disease as having a comorbidity
relationship. In that study, the authors curated Mendelian diseases, and their
corresponding genes from the Online Mendelian Inheritance in Man (OMIM)16,
and mapped them to ICD code sets, which they assessed for comorbidity. We
updated the mapping of diagnosis codes to genes using OMIM as well as OrphaNet
data53. The Mendelian diseases each have from one to 50 implicated genes
(Supplementary Fig. 1a), except for the five chromosomally associated disorders,
which we remove from further analysis.

Of the complex diseases in the Blair analysis, 13 are cancers. We mapped 10 of
these ICD code sets to 15 cancers included in TCGA (Supplementary Data 2).
Then, for all tumour types with both copy-number-alteration data and whole-
exome sequencing data available, we download the calls of recurrently altered
genes as assessed by the Broad Institute and made available in the Firehose
(http://www.broadinstitute.org/cancer/cga/Firehose) download data set of 23
September 2013. MutSigCV assigns a statistic for evidence of selection for mutation
of a gene across a set of tumours. For each tumour type, we select those genes with
a q value statistic o0.25. GISTIC2 identifies genes in significantly recurrent and
focal regions of copy-number amplification or deletion, and we include only the
genes in copy-number peaks that contain fewer than 50 genes. Each tumour type
has from zero to hundreds of associated genes either mutated or copy-number
altered (Supplementary Fig. 1b).

The other data used include the Entrez gene info data
(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/
Homo_sapiens.gene_info.gz), which was used to find common identifiers between
all data sets, the BioGRID data (BIOGRID-ORGANISM-Homo_sapiens-
3.2.119.mitab.txt), HumanNet data (HumanNet.v1.join.txt), the pathway gene set
list from the Consensus Pathway Database and the FANTOM5 human gene
expression data, which are described in the following section.

Genetic similarity of comorbid diseases. We test similarity of pairs of gene sets
using a number of sources of evidence. Our similarity metrics are first evaluated on
the aggregate of comorbid diseases to test the hypothesis that comorbidity is sig-
nificantly related to shared genetic factors. Then, we use analagous tests for the
pairs of diseases, to identify Mendelian disease and cancer with evidence of related
gene sets. Below, we describe both uses of each metric.

The gene enrichment metric scores the overlap of the Mendelian disease gene
set of size m, within a cancer gene set of size c. The score assesses whether the
number of genes in the overlap between the two sets is more than expected. For the
per-pair score, we use a binomial model with success probability based on the
fraction of all assayed genes that are in the Mendelian gene set m

# of genes

� �
, number

of trials corresponding to the cancer recurrently mutated gene set size c, and
number of successes corresponding to the size of the overlap between the sets. For
the aggregate score, we test whether the number of genes shared across 427 pairs of
Mendelian diseases and comorbid cancers is more than would be expected at
random. Overall, 41 genes are shared in common between comorbid diseases. We
assess whether 41 is a significantly elevated number by performing a simulated
convolution of the 427 binomial tests: for each pair, the binomial model, as before,
has a success probability based on the fraction of total genes that are Mendelian
disease genes and a number of trials based on the number of recurrent cancer
genes. Each model is simulated 100,000 times and the numbers for each pair are
added to generate an expected distribution. We find that 41 occurs in 2.1% of
random trials (Supplementary Fig. 2a)

The pathway metric utilizes the NCI Pathway Interaction Database and the
PharmGKB subsets of the Consensus Pathway Database to obtain a diverse and
non-redundant set of pathways. The set contains 1,343 pathways and a total of
4,954 genes. We create a gene list containing the union of all genetically altered
cancer genes across all of the cancers studied, and we remove all pathways with
enrichment in this list to filter very general cancer cellular processes. We score
strength of the overlap of a cancer gene set within each gene set associated with
each remaining pathway using the same binomial gene-enrichment score, then
corrected by the number of pathways with the Benjamini–Hochberg method54.
Many pathways have no overlap with a cancer’s gene list, so the enrichment score
for these is 1. For the Mendelian diseases, we consider a pathway to be affected if it
contains any Mendelian disease gene. To assess the similarity for a pair of diseases,
we use the Spearman correlation coefficient of the pathway scores for each disease
across all pathways, with the Spearman significance statistic providing our per-pair
score. For the aggregate score across comorbid pairs, we use a cutoff on cancer
enrichment (q value o0.1), and we count the number of pathways that are both
enriched in the cancers and involved in the Mendelian disease. We find 136

pathways shared in comorbid pairs. We assess whether this number of overlapping
pathways is more than expected using the convolution of hypergeometrics, similar
to the gene-enrichment convolution (results shown in Supplementary Fig. 2b). To
ensure that the significance is not only owing to two Mendelian disorders with the
most pathways impacted, we also run this test when Rubinstein–Taybi syndrome
and Pervasive Specified Congenital Anomalies are removed: in this case only 81
pathways are shared but the overlap is still highly significant.

The network metric measures the number of direct interactions of each
Mendelian disease gene set with the cancer gene set. This number is compared with
the number found in a set of shuffled networks, created using a degree-preserving
randomization algorithm55. A pair of diseases is considered similar if fewer than
5% of random networks have the same or higher number of interactions. For the
aggregate score, we count over the Mendelian diseases, the number of edges
between a Mendelian disease’s genes and the set of comorbid cancer genes. This
count is compared against the count from the shuffled networks. We use two
networks to independently score our disease pairs. In the BioGRID binary
interaction data set, a curated set of genetic interations and protein interactions,
there are 140,402 edges on 14,112 nodes, covering 86% of Mendelian disease genes
and all but four of our Mendelian disease sets. In all, there are 797 direct edges
between comorbid genes in this network, a number found in o2% of random
networks. Another network, HumanNet, is constructed by integrating a number of
data sources, and it assigns a confidence score to each learned interaction. We take
the top 10% most confident edges, resulting in a network with 7,931 nodes and
47,934 edges. In HumanNet, there are 296 direct edges between comorbid disease
genes, which is a number found in only 0.2% of random networks.

To these pairwise and aggregate measures of similarity, we wished to add an
entirely unbiased source of information on functional similarity and cell-specific
expression. We developed a coexpression metric utilizing the data from
FANTOM5. The FANTOM5 data covers a diverse range of 889 cellular states,
assessing promoter activity in each gene in each cell or tissue type. We
download the human CAGE peak data quantified by transcripts per million
(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/
hg19.cage_peak_tpm_ann.osc.txt.gz). Adding all the peaks that are assigned to the
same gene, we create an estimate of aggregate expression of each gene in each
sample. As we wish to measure whether genes involved in a pair of diseases are
expressed in the same conditions, we calculate coexpression of pairs of genes using
the Pearson correlation coefficient. To calculate our coexpression similarity for a
pair of Mendelian disease and cancer, we consider that significantly elevated
coxpression between any cancer gene and a set of Mendelian disease genes
represents interesting similarity. Thus, for each cancer gene, we compare whether
the set of Mendelian disease genes has high coexpression with that cancer gene, as
compared against the distribution of coexpression of all other genes with the cancer
gene. We test this for each cancer gene using the Wilcoxon rank-sum test. The
P values are then corrected for the number of cancer genes tested using the
Benjamini–Hochberg method.

For each metric, we correct the pairwise similarity scores by the number of
comorbid pairs examined, to create our list of interesting disease pairs. The scores
are shown in Supplementary Data 3 and 4. We find that comorbid Mendelian
disease and cancer are more likely to have genetic similarity by the pairwise
metrics. To assess the influence of the number of annotated Mendelian genes on
detection of genetic similarity and comorbidity, we performed L1 regularized
logistic regression using models with and without the number of Mendelian genes
as an explicit covariate. Logistic regressions were performed in python using the
scikit-learn package. The results are shown in Supplementary Fig. 6.

Cancer gene-expression analysis. For melanoma and lower-grade gliomas,
level 3 RNASeq data were downloaded from the TCGA portal, and the RSEM56

expected counts were rounded to create the input to the analysis. For the albinism
analysis, we aggregate all melanoma patient data into a count matrix, which we
then transform using the variance stabilizing transformation from DESeq2 (ref.
57), which is recommended for clustering data. Then, we apply consensus
clustering using the ConsensusClusterPlus58 package, and an optimum clustering is
found (based on change in classification consistency) of k¼ 4. Three main large
clusters are consistent through k¼ 3 to k¼ 6. We use the R package Survival59 to
assess survival difference between the groups and to plot, based on the available
TCGA clinical data.

For the ectodermal dysplasia analysis, we use TCGA barcodes (01 for primary
tumour, and 06 or 07 for metastasis), to identify the metastasis and primary
samples. We use edgeR to calculate library size factors and estimate dispersion,
followed by assessment of differential expression. For the gene set analysis, we use
voom60 to transform the data, allowing use of the camera gene set score61. In
addition, we use the limma62 differential expression t-statistic to form a pre-ranked
input to GSEA63 for gene set differential expression analysis.

In the lower-grade glioma analysis, we use the copy-number and exome-
sequencing data that match the expression data to identify cases with VENTX
deletion and cases with IDH1 mutation. We aggregate the expression data for all
patients with available matched mutation and copy-number data, and we use the
limma voom function to transform the expression data. We create a gene set
containing the candidate holoprosencephaly genes, and then, as above, we use
voom, camera and GSEA to analyse the gene set differential expression.
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Availability of code for reproducibility. All source data used, code to create the
tables, and output tables can be accessed at http://bit.ly/melamed_comorbidity,
allowing full reproducibility of results.
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